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The Navier-Stokes equations are used to study the unsteady structure of a weak 
shock wave reflecting from a plane wall. Both an adiabatic and an isothermal 
wall are considered. Incident and reflected shock structures are found by ex- 
panding the dependent variables in asymptotic series in the shock strength; 
the first-order terms are shown to satisfy an equation analogous to Burgers 
equation. The structure of the wave during reflexion is obtained from an ex- 
pansion in which the first-order terms satisfy the acoustic equations. The iso- 
thermal wall boundary condition requires the introduction of a thermal layer 
adjacent to the wall. In  this case viscosity and convection play a role secondary to 
the wall temperature boundary condition in determining the structure of the 
reflected wave. The presentation is simplified by introducing a generalized Bur- 
gers equation that gives the same first-order results as the Navier-Stokes 
equations. Correct second-order results are obtained from this equation simply 
by applying a correction to the result for the temperature. 

~ 

1. Introduction 
Shock-wave phenomena have intrigued the physicist and applied mathema- 

tician for almost a century. This enduring interest has been motivated by the 
intrinsic non-linearity and thermodynamic irreversibility of the shock process. 
At first investigators treated shock waves as discontinuities governed by the 
conservation laws of mass, momentum and energy. Our understanding of shock- 
wave phenomena was advanced by Taylor (1910), who examined the viscous 
structure of weak shock waves using the Navier-Stokes equations. Taylor’s 
work showed that the irreversible process of viscous diffusion balances the non- 
linear process of convection to  maintain the structure of a shock wave. His work 
was concerned solely with steady-state shock waves. In the last few decades, 
work on the viscous structure of weak shock waves has been extended to the 
unsteady case by Lagerstrom, Cole & Trilling (1949), Hayes (1956), Lighthill 
(1956), Moran & Shen (1966) and others. The work was greatly aided by the de- 
velopment of an equation which took account of both convective and diffusive 
effects. This equation was first proposed by Burgers (1948) as a simple model of 
the Navier-Stokes equation and was used by him to study the interplay of con- 
vective and diffusive effects in a turbulent fluid. Later it was shown that Burgers’ 

t Now at  Bell Telephone Laboratories, Incorporated, Whippany, New Jersey. 
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equation provided a good approximation for the study of finite amplitude waves 
with viscosity, and the equation was used to examine a whole family of problems 
ranging from shock formation to shock coalescence. Lighthill’s article provides 
a survey of this work. 

In this paper we concern ourselves with the problem of the structure of a shock 
wave as the wave reflects from a wall. Like the interaction of two shock waves of 
different families, i.e. with intersecting paths, and unlike the coalescence of two 
shock waves of the same family, the reflexion of a shock wave from a wall must be 
described by an equation, which simultaneously takes account of wave motion in 
two directions. Burgers equation contains a first-order wave operator; hence this 
equation is able to handle only one direction of wave motion. Also, theapproxima- 
tions that lead to Burgers equation imply an adiabatic flow; consequently only 
an insulated boundary may be treated directly with this equation. We overcome 
these difficulties by matching asymptotic expansions of the Navier-Stokes 
equations: the expansions are carried out in a parameter that is a measure of the 
shock strength; different expansions are required for various domains of space 
and time. When the shock wave is far from the wall, the wall being to the right 
of the shock wave, the first term in an asymptotic expansion of the solution is 
governed either by a right-going Burgers equation for the incident shock, or 
by a left-going Burgers equation for the reflected shock. During the reflexion 
period the first term in the expansion is controlled by the equations of acoustics. 
A thermal region arises when we treat the problem of reflexion from an isothermal 
wall. The formalism developed here clearly indicates how higher-order terms in 
the expansion may be found, and points the way to the solution of a number of 
similar problems. Furthermore, there are indications that other classes of non- 
linear wave problems will yield to the methods presented below. 

The structure of a reflecting shock wave provides a problem which requires an 
extension of the techniques available for the study of weak shock waves. It is 
also of fundamental interest to the fluid mechanist. Recent work by Baganoff 
(1964, 1965) describes the measurement of the pressure history of a shock wave 
reflecting off the end-wall of a shock tube. Petty (1966) and Scala & Gordon 
(1966) have carried out numerical solutions of the reflecting shock structure. 
Goldsworthy (1959) studied the effect of a conducting wall on the trajectory of 
a shock wave of arbitrary strength. Goldsworthy’s theory has recently been 
extended and improved by Clarke (1967). Spence (1961) has suggested the use of 
methods employing Burgers equation in carrying out chemical rate calculations 
during the shock reflexion period. 

We begin by formulating the reflected shock problem and by outlining the 
method of solution. Instead of proceeding to solve the problem directly from the 
Navier-Stokes equations, which we could do, we introduce a simpler equation, 
both for its own intrinsic interest and to simplify the presentation. In  the 
appendix we show that the results are the same as those that would be obtained 
from the complete equations. We call this simpler equation the generalized 
Burgers equation because it is accurate to the same order as Burgers equation in 
regions where Burgers equation is applicable, and because it generalizes Burgers 
equation to encompass wave motion in both directions. First we treat the 
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reflexion of a weak shock off an adiabatic wall. This is followed by a treatment 
of the isothermal wall problem. Finally, the last section contains a discussion 
of our results and some suggestions for future work. 

2. Formulation 
We assume the shock wave to be fully formed long before reflexion is to occur 

so that its initial structure, when viewed in shock-fixed co-ordinates, can be 
computed from the steady form of the Navier-Stokes equations. Such a steady 
solution provides physically meaningful initial conditions for the wall reflexion 
problem, but does not satisfy exactly the wall boundary condition of zero velo- 
city. This is not an unreasonable situation, because initially the shock can be 
located far enough away from the wall so that the gas velocity a t  the wall is 
exponentially small in the distance co-ordinate. However, it is both mathe- 
matically and conceptually simpler to impose the asymptotic condition that, as 
the time until reflexion becomes infinitely large, the shock structure should 
approach the classical steady-state structure. Long after reflexion the structure 
should once more approach a steady state, and this will provide a check on our 
solution. To formulate the initial conditions precisely, reflexion is considered to 
occur at time t* = 0, when, if u*(x*, t* )  is the gas velocity, the spatial gradient@, 
is a maximum. The wall location is taken to be at  x* = 0 and the shock is assumed 
to approach the wall from x* = - co (see figure 1). In  terms of these co-ordinates, 
as time goes to minus infinity the solution must approach the steady-state shock 
structure required by the given strength of the incident shock and the initial 
thermodynamic state of the quiescent gas between the wall and the shock. We 
consider the shock strength as measured by the parameter e = uT/a: to be small, 
where a: is the sound speed ahead of the incident shock, and uT is the velocity 
behind the shock. The subscripts 0 and 1 are used to denote conditions ahead of 
and behind the incident shock. 

The zero velocity condition at the wall is not a sufficient condition for a unique 
solution to the problem; we must also specify the heat transfer properties of the 
wall. The cases of theoretical interest here are the insulated or adiabatic wall and 
the isothermal wall. The adiabatic solution must be known to solve the isothermal 
wall problem; consequently this case is treated first. An adiabatic wall implies 
no heat transfer; thus this problem is equivalent to the collision of two equal 
strength shock waves. The isothermal boundary condition provides a reasonable 
model of shock tube end-wall reflexion because, for the times of interest, heat 
transfer to the wall is small and the wall acts as a constant temperature heat sink. 

We now seek a solution to the problem of a shock wave reflecting off an adia- 
batic wall by constructing an asymptotic expansion for small shock strengths, 
i.e. small E .  The theory of weak shock waves tells us that the shock thickness is 
O(e-1). This result, coupled with the equations of motion, shows that the charac- 
teristic times for the diffusion and for the steepening of a wave are O(E-2). On 
the other hand, the characteristic time for the duration of the shock-wall inter- 
action is the thickness of the shock divided by its velocity. Therefore the inter- 
action occurs in a time O(s-l) of the characteristic time for diffusion and convec- 
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tion, and it is reasonable to  anticipate that the phenomenon of shock reflexion 
is encompassed by the equations of linear acoustics. In  order to account formally 
for this acoustic behaviour, the Navier-Stokes equations are written in terms of 
variables for which the limit process e - f  0 reduces the Navier-Stokes equations to 
the equation of acoustics. The appropriate non-dimensional independent variables 
are based on the shock thickness and on the time for a sound pulse to traverse 
this distance: 

Here x and t are the acoustic space and time co-ordinates, & the longitudinal 
coefficient of viscosity of the quiescent fluid, and p;  and a; are the quiescent 
density and sound speed. The gas is considered ideal and calorically perfect so 
that ug2 = yRTZ where y ,  the ratio of specific heats is assumed constant, R is 
the gas constant, and Tg is the temperature. The acoustic velocity, pressure, 
density, temperature and viscosity are defined by 

and 

The Navier-Stokes equations written in acoustic co-ordinates are 

Pt f u, + 4 P 4 ,  = 0, (2 . la)  
(2.lb) Ut +P,h + 4 - uk, +put + + @(PUU, - (P%),) = 0, 

Tt + (7 - I)% + 4 - yT,,/Pr + PT, + UT + (Y - 1113%) 

+ e21: - Y(Y - 1 )  (413 + 04 - Y ( P E ) , / P ~  + P%%I 

and p =p+T+epT .  (2.ld) 

The Prandtl number, Pr, and the specific heat a t  constant pressure are assumed 
to be constant; 6 is the ratio of the bulk viscosity to the usual viscosity. Note that 
if s goes to zero with the acoustic co-ordinates fixed, the Navier-Stokes equations 
reduce to the equations of acoustics. 

- ~ ~ ~ ( ~ - 1 ) ( 4 / 3 + 6 ) , ~ ~ 2  == 0, ( 2 . 1 ~ )  

For an adiabatic wall the boundary conditions are 

u(0, t ;  e)  = 0 and T,(O, t ;  e )  = 0. 

In  the case of an isothermal wall the last condition is replaced by T(0, t ;  e)  = 0. 
The initial conditions are imposed by requiring the solution to approach a given 
steady-state shock structure as t - t  -a. We begin with an attempt to obtain 
an asymptotic expansion for the structure of the reflecting shock wave by ex- 
panding the dependent variables, when expressed in acoustic co-ordinates, in a 
series in e. For example, 00 

u(x,  t ;  F )  = 2 u(n)(x, t)P-l. 
n= 1 

Such a scheme cannot be uniformly valid; we employ it here only to provide the 
motivation for the correct procedure. Instead of substituting the above series 
into the Navier-Stokes equation and equating like powers of E to obtain a hier- 
archy of equations for the terms in the series, we define an acoustic limiting pro- 
cess in which E + 0 with the acoustic variables fixed. This limiting process, which 
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we will denote by ‘lim’, permits us to obtain the terms in the acoustic expansion 
by operations such as 

and 

u(I)(x, t )  = lim u(x, t ;  e )  = limit u(x, t ;  E )  
€+O 

d 2 ) ( x ,  t )  = lim 

We also find the partial expansion notation 
m 

n= 1 
Em%(x, t ;  E )  = 2 dn)(x, t)sn-l 

useful. The symbol Em means: express the function uin acoustic co-ordinates, and 
then expand to m terms as a series in B. 

FIGURE 1. Sketch of co-ordinate systems, initial shock-wave structure and hypothetical 
shock path. 

When the acoustic limit is applied to equations (2. l), we see that the first-order 
terms in the acoustic expansion are solutions of the ordinary acoustic equation, 
e.g. 

The initial conditions for these first-order equations are obtained by applying 
the operation lim to the original initial conditions. The initial condition for u is 
that as x, t + - co, we require u(x, t; e)  to approach the classical Taylor structure 
for weak shocks: 

where I? = (y  + 1)/2 and /3 = 1 + (7- l ) /Pr .  As B+ 0, we see that 

(1) - 0. 
u x x  - 

(2.2) ~ ( x ,  t -+ - a) + (1 + e(M(z-f-cWz) 1 1- > 

u(l)+limu =f(x-t) (1+e(r/B)(z-O)-1. 
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The letter f will be used throughout this paper to denote the function defined 
above. The solution of the wave equation which satisfies the above limiting con- 
dition and d1)(0, t )  = 0 is 

u(1) = f(x - t )  -f( - x - t) .  

If we attempt to calculate the second-order terms in the acoustic expansion, 
we find that d 2 ) ( x ,  t )  satisfies an inhomogeneous wave equation of the form 

The solution of the initial value problem for d2) contains terms such as f’(x - t)t 
andf’( - x - t) t ,  where the prime denotes differentiation with respect to the func- 
tion’s argument. These terms result from the inhomogeneous terms in the above 
wave equation. As ( $ 1  -+00 such terms are unbounded; thus when t = 0 ( 1 / ~ ) ,  the 
acoustic expansion for u becomes invalid because the second term in the ex- 
pansion will be the same order in B as the &st term. Higher-order terms in the 
acoustic expansion exhibit even more rapid growth with time. The non-uniform 
behaviour of the acoustic expansion suggests that we need to define new variables 
which lead to an expansion that is valid as It( becomes infinite. 

Consider the behaviour of the second-order acoustic solution as t -+ - co, 
i.e. long before reflexion. When the right-facing characteristic 6 = x - t is fixed 
and - t becomes large, the term tf’( - x - t )  vanishes but the term tf’(x - t )  grows 
without bound. This motivates an expansion in which the co-ordinates 6 and 
f = et are held fixed as E -+ 0. This limit process will be denoted by l s ,  the symbol 
Emu is used to designate the m-term expansion in e of the function to its right in 
the variables <, f. The co-ordinates < and t will be called the right-going Burgers co- 
ordinates because the equation satisfied by u = 7J1)(6, t )  may be shown to be 
Burgers equation. To construct the appropriate expansion as t + 00, i.e. long 
after reflexion, we need to introduce left-going Burgers co-ordinates:? 7 = (x+ t )  
and f = E t .  These latter variables apply when t > 0, and the notations Emu 
andrm are also used for expansions of functions of these variables. This notation 
is a consistent one provided we adopt the rule that the co-ordinate 6 is used when 
t < 0, and 7 when t > 0. 

Before we proceed with the formal construction of a uniformly valid asymp- 
totic expression, let us briefly examine the manner in which the first term in the 
right-going Burgers variable expansion for u matches the first term in the acoustic 
expansion. If the Navier-Stokes equations are written in the variables 5 and f, 
and, with these variables fixed, e is made to approach zero, we see that satis- 
fies Burgers equation q) + r@jp = +p@. (2.3) 

The derivation of this equation from (2.1), which is not straightforward, is dis- 
cussed in $4. The steady-state solution of this equation with ?D-t 1 as (+ - 00 
and ?J1)-+O as C+ +a is the Taylor shock structure 7 8 )  = f ( [ -  rf/2). When f 
goes to zero, this becomes the initial condition used for the first-order acoustic 
problem. Thus, for t -+ 0 the first-order Burgers term approaches the first-order 

-f It may be easier for the reader to think in terms of ‘incoming and outgoing’ co- 
ordinates rather than in terms of our ‘right-going and left-going ’ co-ordinates. 
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acoustic term for t -+ - 00, i.e. they match one another. A more formal way of 
carrying out this matching is to write the acoustic solution in terms of the Burgers 
co-ordinates and iP)([, f) in terms of acoustic co-ordinates, so that 

u(1) = f(z-t)-f(- x - t )  = f (0 -f ( - 6 - 2q4,  
al) = f([ - ryq = f(x - t - €1312). and 

As e goes to zero with t < 0 ,  these two expressions become equal, a fact formally 

lim u(I)(x, t )  = lim iP(& i?). 
expressed by 

We will use a generalization of this ‘limit matching principle’, 

- 

- 
E,E,u = EnEmu, 

which Van Dyke (1964) calls the ‘asymptotic matching principle’. 
We now take the point of view that long before the shock nears the wall the 

problem should be viewed in the variables 8, E The first-order solution then satis- 
fies Burgers equation for right-going waves. This equation is not valid near the 
wall at  any time because it does not permit solutions which take into account re- 
flexions off the wall. Also, as the shock nears the wall the right-going Burgers 
equation becomes invalid for all space. Soon after reflexion, a left-going Burgers 
equation becomes applicable in a region away from the wall. These right- and 
left-going ‘Burgers regions’ are tied together by a region which is governed by 
the acoustic equations. The initial conditions in the acoustic region and in the left- 
going Burgers region are provided by the asymptotic matching principle: we 
assume that there exists an overlap domain between adjacent regions where the 
appropriate asymptotic expansions are both valid, and we demand that these 
solutions match one another. 

3. A generalized Burgers equation 
We could now proceed, using the Navier-Stokes equations, to obtain an asymp- 

totic expansion in E for the structure of a reflecting shock wave. However, both 
to simplify the presentation of our method and because of its own theoretical 
merit, we will introduce a simpler equation. This equation is as accurate as 
Burgers equation in the Burgers regions and takes into account wave motion in 
both directions. In  the appendix the generalized Burgers equation is carefully 
compared with the Navier-Stokes equations. From this comparison it is clear 
that the first-order terms in an acoustic expansion of the solution to the general- 
ized Burgers equation agree with the first-order terms in an acoustic expansion 
of the Navier-Stokes solution. The second-order results for the velocity and 
density also agree, but it is necessary to apply a correction to the second-order 
temperature and pressure results in order to bring them into agreement with the 
Navier-Stokes result. This correction is derived in the appendix. Thus the 
generalized Burgers equation, unlike Burgers equation, provides solutions which 
are uniformly valid in the entire (x,t)-plane. This generalized equation is also 
easily solved by numerical procedures, and later we will compare some numerical 
solutions with our analytical results. It is hoped that the equation will prove 
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useful in the study of other finite wave problems involving wave motion in both 
directions. 

Lighthill (1956) has shown that the equations of isentropic gas dynamics, with 
a linear diffusion term added to the momentum equation to account for viscosity 
and heat conduction, provide a description of finite wave motions in viscous 
fluids accurate to first order in the wave amplitude. These equations provide a 
starting-point for Lighthill's discussion of unsteady weak shock waves. By focus- 
ing his attention on problems involving weak waves moving in one flow dicec- 
tion, e.g. shock formation by a piston, Lighthill is able to simplify these equations. 
This is done by a process equivalent to the derivation of Burgers equation men- 
tioned above, where the use of the Burgers limiting process resulted in Burgers 
equation. Lighthill's method is to write his equations in terms of the Riemann 
invariants of the inviscid equations. As is well known, one of these invariants is 
constant across a so-called simple wave region, that is, a region where disturb- 
ances are propagating along only one family of the isentropic characteristics. 
By showing that this fact remains true to first order in the wave amplitude even 
when the flow is viscous, Lighthill was able to reduce his equations to Burgers 
equation. Whether Burgers equation so derived is applicable to right-running 
or left-running waves depends on which of the two isentropic Riemann invariants 
is held constant. With the left-running invariant held constant, Burgers equa- 
tion for right-running waves is obtained; with the right-running invariant held 
constant, Burgers equation for left-running waves results. 

We now derive an equation which is simpler than the isentropic equations with 
a diffusion term, but which has embedded in its structure Burgers equation for 
either right- or left-running waves. First we rewrite Lighthill's equations in a 
form that suggests the introduction of a function which automatically satisfies 
the momentum equation. Such a function was introduced by von Mises (1958) 
for the isentropic inviscid case. The isentropic equations, with a linear diffusion 
term added to the momentum equation to account for heat conduction and vis- 
cosity, may be written as 

and 
( 3 . 1 ~ )  

(+u*'+ ~ a * ' ) , *  1 + u* (+u*'+ - a*a) -u*u,*,+ (a*'-u*')u$ = 0. (3.lb) 
Y-1 Y-1 x* 

A function $h* is now defined so that 

$h;* = u*, 

$h; = - +U*'f  (" 3 +  s )Tu,**+(ag2-a*2)/(y- P 3  1). 
Po 

This function, which automatically satisfies the momentum equation (3.1 a) ,  is 
substituted into (3.1 b)  to yield 

PP: + 2$h$ $& - (a;' - (Y - 1)$h$)$h:*,* - __ $$x*t* 
PX 
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If higher-order non-linear diffusion terms on the right-hand side of (3 .2 )  are 
dropped, and the resulting equation is expressed in non-dimensional acoustic 
co-ordinates x, t ,  we find 

(3.3) A t -  $xx = C ( P # x x t -  vx#sr (Y - 1)q5t#sz)? 
where q5 = ptq5*/c,u;. We shaII refer to this equation as the generalized Burgers 
equation. It is convenient to introduce the quantities Q and u defined by 

BQ = -&$/at2 

In  terms of Q and u the generalized Burgers equation may be written as the system 

and Qt + ux = @ Q X x  - 2uQX - (Y - 1)Qux). (3 .3b )  

Using the fact that U * ' / C G ~ ~  = T*/T$ = 1 +c:T and the definition of q5, we see 
that Q is like a temperature in the acoustic region: 

and 8% = &/at. 

ut+Q, = 0 (3 .3a )  

1 

(3 .4)  

4. Shock reflexion from an adiabatic wall 
We now apply the machinery of the theory of matched asymptotic expansions 

to construct an expansion in E for the structure of a reflecting shock wave. Terms 
correct to O(E)  are obtained from the solution to the generalized Burgers equation 
by correcting the temperature with a formula derived from the Navier-Stokes 
equations. 

The Burgers variables suitable for the study of right-going waves, 6 and f, are 
chosen as the appropriate co-ordinates in which to view the problem when the 
incident shock is still many shock lengths from the wall. In  terms of these co- 
ordinates the location of the walI is given by trn = - t jc.  For reasons which will 
become apparent shortly, these right-going Burgers co-ordinates are used with 
the restriction that f <  0; after reflexion the appropriate co-ordinates are 
7 = x + t and f. The wall location and shock path are sketched in figure 2 as they 
would appear in a (x k t ,  i)-plane. 

We now focus our attention on the incident shock and seek an asymptotic 
expansion of the solution of the generalized Burgers equation written in right- 
going Burgers co-ordinates. In terms of these co-ordinates, equations (3 .3)  take 

(4.1) 
the form 

( 4 4  

- 
"5 - Qg = c(/3Qgc - Qf - 2GQg - ( y  - l)Qus) 

- - 
and ~g - Q g  = c G ~ .  

The first-order terms in the expansion are defined by 

Q(l)(E, f) = lim Q(6, 8 )  

@)(<, i) = limE([, f; €), and 

where the barred limit indicates that the right-going Burgers variables are to be 
fixed as e+O. Some care must be exercised in the application of the limiting 



510 M .  B. Lesser and R. Seebass 

process to equations (4.1) and (4.2) because the same equation results from both 
(4.1) and (4.2); i.e. i& applied to either equation leads to the single equation 

q- fp = 0. (4.3) 

To overcome this difficulty we simply set theright-side of (4.1) equal to the right 
side of (4.2) before taking%. Thus we obtain the set of equations (4.2) and 

The difficulty is now resolved because, when we apply l g  to equations (4.2) 
and (4.4),we obtain two independent equations for the two unknowns Q(l) and 
&I. The same problem arises in deriving (2.3) from the Navier-Stokes equations, 
i.e. in taking the limit e+ 0 in equations (2.1) with 5 and tfixed. 

(4.4) 
- 
ut = p & g g - & ~ - 2 u ~ ~ - ( y - l ) ~ u g .  

- 

t= €2 I 

I 
/ 
I 
I 

Left-going 
Burgers region 

I 

/ Right-going 
Burgers region 

I 
I 
I ;i I ' 

Thermal layer 

FIGURE 2.  Wall location, shock-wave path and regions with different expansions in the 
(x: 5 t ,  t)-plane. 

The first-order terms in the right-going Burgers expansion satisfy the equa- 
tions (4.3) and (4.4). The wall boundary condition is G(tU,,t) = 0, where &,,-+co 
as € 4 0 .  This implies that E ( l ) ( t , t )  must satisfy the condition U(l)(co,f) = 0. The 
first-order form of the isentropic gas law is T(l) = (y -  l)jP), and equation (3.4) 
takes the first-order form T(l) = (y-  l)@). Thus we see that 

&(1) = $1) = qW/(y - 1). 

The above relations and the weak-shock limit of the conservation laws imply 
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that @( -00,f) = @)( -co,H). Equation (4.3) may now be integrated; the last 
relation is used to evaluate the arbitrary function of H that arises in the integra- 
tion. Thus we find that = @l). Using this last result to eliminate @) from 
(4.4), we arrive a t  Burgers equation for right-going waves: 

+ rjp@ = (@)$). (4.5) 

In addition to the above equation and boundary condition, u(l)(E, f) must satisfy 
the initial condition that as t goes to minus infinity G1) should approach the Taylor 
weak-shock structuref(6- rH/2). The desired solution for G(l)(t, H) which fills all 
the above requirements is f ( <  - E/2)  itself. 

As the shock nears the wall, or equivalently as t goes to zero, the right-going 
Burgers expansion becomes invalid because it cannot take into account any 
disturbance that travels with a speed that is not nearly u + a: the wall has effect- 
ively zero speed and the reflected wave speed - a. If we take the acoustic limit of 
the generalized Burgers equation with definitions of the form 

u(l)(x, t )  = lim u(x,  t ;  E )  

we find that 

and 

Clearly &(I) and dl) satisfy the ordinary linear homogeneous wave equation. The 
acoustic limit of the wall boundary condition shows that u ( I ) ( O ,  t )  = 0. The unique 
solution of the linear wave equation requires that we specify an initial condition. 
This condition is found by requiring that our acoustic expansion match the right- 
going Burgers expansion. In  terms of the partial expansion symbols defined in 
92, this matching condition takes the form 

El@([, H )  = B1u(1)(x, t ) .  (4.7) 
Consider the left side of this expression, which is a symbolic representation of a 
one-term acoustic expansion of the first term in the right-going Burgers expan- 
sion of the solution. To evaluate it, we first express the Burgers term in acoustic 
variables, and then find the first term in an expansion in E :  

E ~ ~ P ) ( [ ,  i) = E,~(c -  r q 2 )  = E J ( ~  - t - a / 2 )  = f(. - t ) .  

The right side of (4.7) is the limit as B-+ 0 of the first term in the acoustic expan- 
sion for u, expressed in right-going Burgers co-ordinates. This can be interpreted 
as a condition on u(l) as follows: 

Z1u(1)(x, t )  = lim U(l ) ( t  + f/€, +). 

Another way of expressing this last result is to note that letting E -+ 0 is equivalent 
to letting t go to minus infinity with 6 = x - t kept constant as required by l z .  
We can now write the initial condition to be imposed on dl) as the requirement 
that as t -+ - 00 with x - t fixed, &(x, t )  -+ f (x - t ) .  

As the solution of equations governing higher-order terms in the acoustic 
expansion requires the ability to solve inhomogeneous wave equations, we will 
need the solution of the problem: 

Utt-U,, = H(x- t , x+t )  (4-8) 
with u(0,t)  = 0, 
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and as t - t  -a with x - t  fixed, u ( x , t ) - + ~ ~ ( x - t ) t ~ - ~ .  The solution to (4.8) is 
most easily expressed in the characteristic co-ordinatest < = x - t and 7 = x + t : 

u(L7) = u(g ,9 , ) -u ( - s ,a ) -S8S-1H(~ ,7 )dgd7 .  81 5 (4.9) 

The initial conditions are applied on the characteristic line 7 = ql. For our prob- 
lem the initial conditions are actually limiting conditions as t goes to minus 
infinity. Because the co-ordinate g is fixed in this limiting process, t --f - 00 im- 
plies that 7 --f - co. Thus to use formula (4.9) for our problem, we apply the con- 
dition at  a fixed s which we call yl, and then let yl go to - co in the resulting ex- 
pression. Because of the inhomogeneous term, there is a term in the integral part 
of (4.9) which cancels the growth terms occurring in this limiting operation. 
Hence we see that it is the growth terms that are responsible for the non-uni- 
formity of the acoustic expansion and make it possible to match the Burgers 
expansion to the acoustic expansion. 

In  the case of the first-order acoustic problem lc = 1, u1 = f ( g ) ,  u = u(1) and 
H = 0, so that the above formula gives us the result 

= f ( 5 )  -f( - 7). (4.10) 

The remaining first-order acoustic variables p(l), T(l' are found by using the isen- 
tropic gas law for vanishing E ,  and equation (4.6) for &(I). The results are: 

P'l) = f ( 6 )  + f (  - 71, 

T(l) = (Y - 1) Cf(0 + f (  - 711. and 

This completes the first-order acoustic solution. As we have already noted in 
$2, the acoustic expansion is not uniformly valid for large time. To obtain a valid 
expansion for large positive time we must use a left-going Burgers expansion, 
i.e. an asymptotic expansion of the solution written in the co-ordinates 7 , f .  
Thus we express the generalized Burgers equation in these co-ordinates and let 
E +  0 with 7 and f fixed. With definitions of the type 

u(1)(7, $1 = lim ~ ( 7 ,  f ;  E ) ,  
- 

and the conditions that 7J1) = 
Burgers equation for left-going waves, 

= 1 at 7 = - co, the process lz results in 

q) + (r;rtcu - + 1 1 ~ ~ )  = ( i p p  811' 

The variables jP)(r, f) and T(l)(q, f) are found in a straightforward manner to be 

and 

The requirement that the left-going solution match the acoustic solution de- 
termines the initial condition that U ( 7 , f )  must satisfy. By analogy with our 
matching of the right-going Burgers expansion with the acoustic expansion, one 

-f These co-ordinates will be used interchangeably with (x, t )  for the acoustic co-ordinates 
and should not be confused with the (5, t )  or (7, t )  co-ordinate systems. 
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can see that the matching condition is equivalent to the requirement that as 
f+ 0, G1)(7, f) -tf(q). Thus we find that the appropriate solution to (4.8) is 

(4.11) 

We now return to the acoustic region to find the second term in the acoustic 
expansion of the solution to the generalized Burgers equation. By using the 
correction formula derived in the appendix for the second-order temperature, we 
may use the generalized Burgers equation to derive the second-order acoustic 
expansion that would be obtained from the full Navier-Stokes equations. G.I. 
Taylor observed that the structure of a shock wave is maintained by a balance 
between convective and diffusive effects. This balance cannot be maintained 
near the wall because the convective term vanishes at the wall. However, the 
acoustic solution shows that these interesting effects are second-order in e. To 
assess their influence, we must determine the second-order term in the acoustic 
expansion. The equations governing the second-order acoustic terms are found 
by substituting the series 

and 

into the generalized Burgers equation and using the results (4.6). Thus we find 
the equations 

&(x, t ;  6 )  = &'1'(x, t )  + € & ( 2 ) ( 5 ,  t )  + O(E2) 

u(x ,  t ;  E )  = @(x, t )  + EU(2)(X,  t )  + O(E2) 

(4.13) 
up + &(,2) = 0, 

ul2)+ Qz' = @&El - 2~(1)&',1)- (y - l)&u,, 

and the auxiliary relations 

I (4.13) 

The last of the equations (4.13) is obtained from the isentropic gas law. 
The second-order acoustic expansion of the generalized Burgers equation is 

governed by the system (4.12). With d2)(x ,  t )  and &(2)(x, t )  determined, the rela- 
tions (4.13) prescribe the second-order density and temperature. In  the appendix 
we compare the first- and second-order acoustic expansion of the Navier- 
Stokes equations with (4.6), (3.4), (4.12) and (4.13). This comparison shows that 
the acoustic expansion of the generalized Burgers equation gives the velocity 
and density to second order, but that the second-order temperature, TI?&, 
satisfies 

(Tgk)! = Ti2) + - Y T'l) (4.14) 
Pr xx 

with T o ( x ,  t )  determined from (4.13) and (4.13). Equation (4.14) then gives, after 
a quadrature, the second-order temperature TPS. Thus (4.13) and (4.13), coupled 
with the correction formula (4.14), determine the second-order acoustic expan- 
sion of the Navier-Stokes equations. 

33 Fluid Mech. 31 
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The boundary condition that must be satisfied by u@)(O,t), a: = 0 is clearly 
d2)(0, t )  = 0. Initial conditions are supplied by the matching principle; that is, 
we require E2ElU = E1E2u. This is equivalent to requiring that as t - t  - 00 with 
x - t fixed, d 2 ) ( x ,  t )  -+ rf’(x - t ) t / 2 .  Transforming the inhomogeneous wave equa- 
tion satisfied by u(2) into acoustic characteristic co-ordinates, and substituting 
(4.10) for dl), we find 

Thus the second-order acoustic velocity is determined by a Goursat problem of 
the type discussed earlier. Using formula (4.9), we find that 

rt 

To find the other second-order variables we need only substitute the above 
solution for d2) into equations (4.12) and (4.13). The arbitrary function of x 
introduced by the integration is evaluated by imposing the condition that the 
second-order solution vanish as t goes to  minus infinity with x fixed. The second- 
order terms in the acoustic expansion for p, T and p are found to be 

PC2) = f2( - r )  + f 2 ( 5 )  + Br(f(r) -f(O - 1) - iWf’(5) +f’(r))  

and 

We can verify that the second-order acoustic solution matches the left-going 
Burgers expansion. Thus one finds that 

p(2) = p@’+T(2)+(y- l)(f(<)+f( - r ) ) 2 .  

5-3y  
E1E2u = E2E1u = f ( 7 )  - E ~ tj”(7) 

4 

5-3y  
and BlEzp = E2Elp = 2 -f(r) + ET tf’(7). 

It is possible to construct composite expansions by several different procedures. 
We employ the additive composition principle of Van Dyke (1964). These ex- 
pansions are constructed so that they reduce to the Burgers or the acoustic ex- 
pansion in the appropriate limit. The procedure is this: consider a function 
W(x, t )  which may represent any of the variables of interest, and form the 
composite expansion 

Wcomp = Z1 W + E2 W - BIE2 W .  
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The composite expansion for u is given by 

ucomp = f(6 - ert/2) -f( - 7) + €[ r v ~ p  + 
( 4 . 1 4 ~ )  

for t < 0, and 

r 
- 2 -tf’(5) + y; ( f ’ ( r )  - 5) -f’(Qlogfh))] (4.14b) 

for t 3 0. 

the same way. 

effect of an isothermal wall. 

Composite representations of the other dependent variables may be found in 

Before discussing some of the implications of the results, we first consider the 

5. The isothermal wall 
In the last section we determined the structure of a shock wave undergoing 

reflexion from an adiabatic wall. The boundary condition on temperature was 
that its gradient T!(O, t )  vanish at  the wall. This condition is automatically satis- 
fied for the acoustic equations if the gas velocity vanishes there. Consequently, 
the first-order acoustic equations are degenerate at  the wall because they are 
unable to satisfy an arbitrary temperature boundary condition. This state of 
affairs again signals for the method of matched asymptotic expansions; hence we 
seek a co-ordinate stretching that leads to a valid expansion in the wall region. 
The expansion of the solution near the wall, i.e. in the thermal layer, must then 
be matched with the acoustic expansion obtained previously. The generalized 
Burgers equation used in the above analysis is unable to cope with an arbitrary 
temperature boundary condition. For this reason we must return to the Navier- 
Stokes equations (2.1) for our analysis. As pointed out by Goldsworthy (1959), 
the pressure gradient in a thermal layer of the type we are considering should 
nearly vanish. This provides a check on our co-ordinate stretching, i.e. we expect 
the equations governing the first-order terms in a thermal layer expansion to indi- 
cate the absence of a pressure gradient. 

The thermal layer co-ordinates are defined by the stretching 2 = e d x ,  % = t. 
To find the form of the thermal layer expansion, we use the matching principle 
g l E l u  = El  glu, where 8, indicates the n term thermal layer expansion. Con- 
sider the thermal layer expansion of the first-order acoustic velocity: 

E ,̂E,u = B1u(l)(x, t )  = f i l l f (x  - t )  -f( - x - t ) ]  

= 81[f(€k2 - %) -f( - €42 - %)I 
= 22f’( - %)O. 

This shows that the thermal layer velocity expansion must have the form 

&(a, t ;  €) = BW)(2, t A )  + O(E) 
33-2 
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in order to match with the acoustic expansion. Because x+O when s-+0 with 
2 fixed, and 2-t  - co when e+ 0 with x fixed, the condition imposed on the first- 
order thermal layer solution by the matching condition is equivalent to 

limit &(I)($, E) = %f‘( - E). 

Similar considerations show that the thermal layer expansion of p^, and hence $3 
and 5?, must be of the form pi = o(p^(l)). Substitution of such expansions into 
the Navier-Stokes equations expressed in thermal co-ordinates leads to the 
following set of equations for the first-order thermal layer variables: 

&-a, 

I ,. 
and 

The wall boundary conditions are 

p (̂1) + T(1) = @(I). 

A 

T(l)(O, E) = &(1)(0, E) = 0, 

and the matching principle leads to the following boundary conditionsat x = - co : 

(5 .2 )  I &(I) = 2f’( - t)2, 
= 2f( - f) 

T(1) = 2(y- l)f( - t). 

@(I) = 2yf( - E). 

A 

and 

Using the second and fourth of equations (5.1) and conditions at  x = - 00, we 
find that 

A simple manipulation of the thermal equations shows that the first-order ther- 
mal layer temperature satisfies the inhomogeneous heat equation 

(5.3) 

If we define 
then equation (5.3) becomes 

0 = 5%) - 2(y - l)f( - %), 

of--&2 = 0, 

0(0,t) = - 2(y - l)f( - E). 

1 
Pr 

with 

The solution of this last problem is straightforward (see, for example, Tychonov 
& Samarski 1964). We find 

In terms of this result the first-order temperature, density and velocity in the 
thermal layer are = 0 + 2 ( y -  l)f( -E), 

p̂ W $3(1) - T(1) = 2f( - E) - 0 h 

and 
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The influence of the isothermal wall on the solution in the acoustic region can 
be seen by expanding the above solution, written in acoustic co-ordinates, in B. 

Thus we find, e.g. that 
E,@) = 3(y - 1)f( - t )  + O(ezjc*), 

but that 
2(y-1) a2Pr 

E2~bW)(2 ,  t A )  = 2f'( - t )x  + E* ~ t dz da + O (d ex /€*) .  jo so sf'(%--) 
(5.4) 

Because the second-order terms in the acoustic expansions of p(1) and 5% are 
exponentially small, these terms can have no effect on the boundary conditions 
for the second-order acoustic expansion. However, the second-order term in 
the acoustic expansion of W) is O(e*). This implies that the acoustic and thermal 
layer expansions can only be matched if the acoustic expansion takes the form 

u(x, t )  = u(1) + €*U(2) + O(B). 

Substitution of this and of similar expansions for the thermodynamic variables 
into the acoustic form of the Navier-Stokes equations shows that u(2) satisfies the 
homogeneous wave equation. It is easy to show that the new wall boundary 
conditions implied by (5.4) do not affect the right-going Burgers expansion. 
Using the initial condition provided by the acoustic expansion of the right-going 
Burgers expansion, we see that as t -+ - co with x - t fixed, u(2) -+ 0. We then find 
that the solution which satisfies this initial condition and the time-dependent 
wall boundary condition obtained from (5.4) is 

The matching condition E,E,u = El E,u shows that the thermal layer has an 
exponentially small effect on the right-going Burgers expansion, but requires a 
term of O(&) in the left-going Burgers expansion: 

Z(7, f) = iP (7 ,  f) + €%P(q, i). 

E ( 7 ,  0) = f ( 7 )  + C W 7 ) ,  

Here the matching condition supplies the initial condition 

(5.6) 

where e*U(q), an 'effective wall velocity' that accounts for the displacement effect 
due to the presence of the thermal layer, is given by (5.5): 

It is also convenient to introduce here the 'effective wall displacement', &X(v) ,  
where 

X ( 7 )  = S(y - 1) ( gr)' 1; as sech2 (a  - I'q/Sp)da. 

Thus the structure of our weak shock wave after it reflects from an isothermal 
wall is the same as the structure of a weak shock wave after it reflects from an 
adiabatic wall whose location is prescribed by d-U(Z/e). 
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Goldsworthy (1959) computed the effect of a heat conducting wall on the tra- 
jectory of the reflected shock wave by computing the displacement effect of the 
thermal boundary layer near the wall. His result for the effective wall velocity 
becomes 

when the weak shock approximations are made. This is simply the asymptotic 
behaviour of our expression (5.7). Goldsworthy’s thermal boundary-layer 

€&U(t) = &2(y- 1)/(7TPrt)+ 

7 
FIGURE 3. Effective wall velocity and displacement due to the thermal layer. 

analysis correctly predicts the asymptotic behaviour of the reflected shock tra- 
jectory, and our analysis provides the structure of the reflecting shock wave as 
long as it is weak. Figure 3 displays the effective wall velocity and displacement 
as a function of time, as well as their asymptotic behaviour. 

To compute the structure of the reflected wave we need to solve the system 

z, + &, + €Gt = 0, 

&i - ui = pa,, - 2 ~ & ,  - (7- ~)QG,, 

subject to the initial condition (5 .6 )  and the boundary condition that as 7-f -a, 
G(7, f) + 1. Because the initial conditions, and consequently the next order solu- 
tion we are seeking, contain terms O( 1)  and O(d) ,  while the equations contain 
terms O(1) and O(s) ,  it  is clear that we may obtain simultaneously the first two 
terms, 

by solving the equation 
ucu + €&?J2), 

zz+ ( r u - y +  i ) ~ ,  = ipc,, (5.8) 
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subject to the initial condition (5.6) and the boundary condition 5( -a,$) = 1. 
This procedure appears to involve fewer analytical complications than that of 
solving the linear equation for with 8) given by (4.11). A Hopf-Cole trans- 
formation of the form 

reduces (5.8) to the heat equation 

subject to the initial condition 
#r = ( W # * V ?  

It is then a simple matter to write a formal expression for #(q, i ) .  Once this is 
done, the velocity may be determined from the relation 

Here we have imposed the condition that Ti( - 00, i )  = 1. 
The formal representation of U(7,f) may be written in the form 

(5.9) 
y=,-- 7 5-3Y 

t 4 .  where 

When E = 0, this expression reduces to U( V ,  H) = f( Vi) ,  and we note that the 
location of the midpoint of the velocity profile, ;ii = 4, is given by V = 0. 

To determine how the asymptotic structure of the shock wave has been affected 
by the isothermal wall, it is necessary to investigate the behaviour of (5.9) as 
i+ m. Because we are interested in all values of V ,  the analytical details become 
cumbersome and we give only the result. We find 

u(7,f)  N 2(y- 1) - 

3 - y -  
for 7 > -t, 

2 

for ~ 3 - y i >  7 > -(y-l)f ,  
2 

and U ( 7 , i )  N 1 
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for 7 < - (y  - 1)l. We can use the second of these results to obtain the asymptotic 

(Zr shock location: 5- 3y 
Xshock N -t$-€t+2(y-l)€ __ t*. 

4 

The first two terms in the asymptotic expression represent the position of the 
shock wave were it reflected from an adiabatic wall. Consequently, a shock wave 
reflected from an isothermal wall travels a t  a velocity that is less than that for a 
shock wave reflected from an adiabatic wall; this decrement is asymptotic to 
a:(? - 1) (Sre/ntPr)4, which is in agreement with the results of Goldsworthy 
(1959) and Sturtevant & Slachmuylders (1964). 

6. Discussion and concluding remarks 
We have employed the technique of matched asymptotic expansions to obtain 

an asymptotic representation of the structure of a weak shock wave undergoing 
reflexion from a wall. The results of our analyses are given in @ 4  and 5. Here we 
will discuss some of the more interesting features of these results and some pos- 
sible extensions of our procedures. 

5 

= 1.4 
Pr = 314 t 

0 

-5 

-8 -6 -4 -2 0 

We have employed the technique of matched asymptotic expansions to obtain 
an asymptotic representation of the structure of a weak shock wave undergoing 
reflexion from a wall. The results of our analyses are given in @ 4  and 5. Here we 
will discuss some of the more interesting features of these results and some pos- 
sible extensions of our procedures. 
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X 

FIGURE 4. Velocity profiles as given by the composite expansion for an adiabatic wall. 
Dotted line is the locus of point in the (x, t)-plane where u = Q. 

Figure 4 shows several velocity profiles constructed from the composite ex- 
pansion for the adiabatic wall problem. Near the wall the gas velocity must 
vanish and the balance between convection and diffusion that maintains the 
profile of a shock wave moving in a boundary free environment cannot continue 
to hold in the wall region. The first-order solution in this region satisfies the equa- 
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tions of linear acoustics. This solution is also the first-order solution for the inter- 
action of two weak shock waves of equal strength, but moving in opposite direc- 
tions. For the first-order solution the velocity reaches its maximum value at 
all x when t = 0. Thus an observer downstream of the shock could, if equipped 
with the appropriate instruments, detect the instant of shock reflexion by de- 
termining when the velocity at  his station attained a maximum. The reason this 
behaviour prevails for the first-order solution is that solutions of the linear wave 

U 
-a 

y= 1.4 
Pr = 314 

E = 0.2 

t 

FIGURE 5.  Velocity versus time at various z stations for an adiabatic wall. Dotted lines 
indicate the locus of points where u. is a maximum for fixed tc. 

equation preserve their shape as they propagate. The linear solution to the wall 
problem consists of a positive velocity wave travelling to the right plus the re- 
flexion o€ this wave travelling to the left, so that the maximum velocity occurs 
simultaneously at  all x. Although steady state shock waves move at a speed in 
excess of the acoustic speed they also preserve their shape structure because the 
non-linear terms in the Navier-Stokes equations are balanced by the viscous 
terms. Near the wall this balance is offset to second order. This effect can be 
seen from the curves of velocity versus time at given z shown in figure 5.  The 
dashed line is a locus of maximum velocity points; one can see that it takes a 
finite time for the velocity maximum to propagate upstream. It is well known 
that a shock wave becomes thinner as it becomes stronger. Figure 6, which com- 
pares velocity profiles obtained from the first- and second-order expansions, 
shows the increase in strength associated with the second-order terms. Figure 7 
is a plot of temperature, density and pressure during reflexion, constructed from 
the composite solution for the adiabatic wall. 

Our isothermal wall analysis shows that, in the cases of most practical interest, 
the structure and trajectory at  the reflected shock are affected to O ( d )  by the wall 
temperature condition. For an isothermal wall these effects dominate the effects 
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of viscous dissipation. This is to be expected because of the displacement effect 
at the thermal layer next to the wall boundary. Our results are in agreement with 
the results of Goldsworthy (1959) based on a boundary layer analysis of the 

FIUURE 6. One- and two-term composite expansions for the velocity at t = 6.0. (Adiabatic 
W d . )  

thermal layer. In  figure 8 we display the values of the thermodynamic variables 
at the wall as a function of time. For the isothermal wall 

@)(O,i?) = 0 and @(1)(0, i?) = @)(O,i?). 
However, since @(1) = p”(1) + the density at  the isothermal wall is the same as 
the pressure at  the adiabatic wall. The variations of temperature and velocity 
through the thermal layer are shown in figure 9. 

As noted earlier, we have integrated the generalized Burgers equation numeri- 
cally. Our procedure employed an explicit finite difference technique similar to 
the one suggested by Richtmeyer (1957) for the coupled linear equations of 
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sound and heat flow. The numerical solution for u was compared with our asymp- 
totic expansion for E = 0.025, 0.05 and 0.10. It was found that the theoretical 
and numerical solutions agreed to the order expected from the theoretical 
results.? 

y = 1.4 

€=.01 
Pr = 314 2 

1 

----i - 1.0 

A- I I 10 
- I0 -5 0 

X 

FIGURE 7. Pressure, density and temperature during reflexion as given by their composite 
expansions for an adiabatic wall. 

Simplified model equations have proven useful in many areas of applied mathe- 
matics. We feel that the generalized Burgers equation may be of some general 
use because it gives a description of finite amplitude wave motions in which vis- 
cosity and convection in both wave directions play a role. Furthermore, we were 
able to find the co-ordinate stretchings that we employed directly from this 
model equation. 

We conclude this paper by making note of some possible extensions of our 
work. One interesting application would be the study of shock formation by an 
accelerating piston. The work of Moran & Shen (1966), referred to in the intro- 
duction, considered the formation of a shock wave by a piston started impuls- 
ively. They showed that for small times the flow was governed by the linearized 

t Agreement could be improved by modifying the deiinition of t. Instead of letting 
5 = et we could use (t)F = eKrF(c) t  where (t)- is used before reflexion and (5)+ is used after 
reflexion. The terms K+ and K- are obtained from solving the conservation laws for the 
shock velocity as a function of e, e.g. it is found that 

~ ( € 1  = 1 + 2{(1+ m 2 / 4 ) - t  - 1y.r = 1 + o(€).  
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Navier-Stokes equations, and that the solution of these equations could be 
matched with the solution of Burgers equation. They then found that the appro- 
priate solution of Burgers equation was in fact uniformly valid for all time. The 

y = 1.4 
Pr = 314 

1 

5 1 

FIGURE 8. Pressure, density and temperature at the wall. 

linear Navier-Stokes equations are considerably more difficult to deal with than 
is the inhomogeneous linear wave equation which results from our procedure; 
thus it would be quite difficult to deal with arbitrary piston accelerations using 
a linearized Navier-Stokes approach. On the other hand, the problem should be 
relatively easy to solve using our approach. The use of a thermal layer should per- 
mit one to handle a number of different heat transfer conditions at  the piston 
surface. The problem of the structure of two unequal strength shocks undergoing 
a head-on collision should also be amenable to our methods. Finally, we expect 
that the method may be useful for other non-linear wave problems in which the 
wave is given structure by either diffusion or dispersion. An example of the latter 
type is provided by the non-linear dispersive wave equation studied by Zabusky 
(1967) in his work on wave motions in non-linear lattices: 

(6.1) 3% - (1 + ~Y,)Y,z - Yzzzr = 0. 
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An analysis similar to that employed here for the reflecting shock problem shows 
that the problems encountered in a straightforward perturbation solution of this 
equation can be resolved by the method of matched asymptotic expansions. m7e 
find that a Burgers type region exists, and that the first term in an asymptotic 
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FIGURE 9. Temperature and velocity in the thermal layer. 

expansion in this region is governed by the Korteweg-de Vries equation. Zabusky 
derived the Korteweg-de Vries equation from (6.1) by following the procedure 
used by Lighthill to derive Burgers equation. As the method seems to apply to 
Zabusky's equation as well as the the Navier-Stokes equations, we expect that 
it will apply to a number of finite amplitude wave problems where non-linear and 
dispersive or diffusive effects are important. 
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Appendix 
This appendix is devoted to showing that the first-order terms in the acoustic 

expansion of solutions of either the Navier-Stokes equation or the generalized 
Burgers equation are the same. We also show that second-order terms in the two 
expansions can be brought into agreement with a simple formula that corrects 
the temperature obtained from the generalized Burgers equation. Because the 
second-order velocity and density terms obtained from the generalized Burgers 
equation are shown to agree with the Navier-Stokes result, and the pressure is 
derived from the ideal gas law, a temperature correction is all that is needed to 
bring about complete agreement in the second-order acoustic expansions. 

For the purposes of this appendix we denote the Navier-Stokes variables by 
the subscript ( )Ns.  The terms in the expansion of the solution to the generalized 
Burgers equation remain without subscripts. Because we assumed the isentropic 
gas law in the derivation of the generalized Burgers equation, this relationship is 
one of the system of equations used in $4. In  expanded form this law is 

p = (7 - l)-lT + (2 - y) / [2(1-  Y ) ~ ] T ~  + O(e2) .  (A 1)  

The terms in the first-order acoustic expansion of a solution to these equations 
satisfy the system of equations 

$)+ Q'," = 0,  &{l)+@) = 0, TO) = ( y -  l)Q(l), (A 2 )  
and p(1) = T(V/(y- 1) = &(I).  

The first-order terms in the acoustic expansion of a solution of the Navier- 
Stokes equations satisfy 

&&, + $$bX = 0, UPS., + (p$bX + T$LZ)/y = 0,  (A 3) 
and T%&.,+ (7- l)t&hX = 0. 

Eliminating Q(l) from (A 2 )  and differentiating the third equation, we find 

P!')+U$) = 0,  T(t9+ (7- I)u$) = 0. (A 4) 

Because (T(l)+p(l))/y = T(l)/(y- l ) ,  we can write the first equation of (A 2) as 

u:') + (T(') + p(')),Jy = 0. 

Equations (A 4) and (A 3) are identical. Because the boundary and initial condi- 
tions used for both sets of variables are the same, we have established equality 
between the first-order acoustic expansions obtained from the Navier-Stokes 
and the generalized Burgers equation provided we may assume the existence and 
uniqueness of the solution. 

The second-order terms obtained from the generalized Burgers equation satisfy 

and 
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From the Navier-Stokes equation we find that the second-order acoustic expan- 
sion satisfies the equations 

(2) (2) - - (1) (1) 
PNSt  + uNSx  - ( p N S u N S ) x  F N S l ,  

u(2) NSt + (p%S + T%&)zlr = u%!!5'xz-PNSuNSt (1) 
(1) 

- u%Su!%~- ( ~ % k T % 3 ) x / Y  FNS,, j (A6) 
'%St  + (7 - )u%,kz = yT&'3rr/Pr - p N S  ( l)[T(l)  NSt  

-u$i&T$LX- (7- l ) (p f iL+ T8!g)u$bz = F N S s .  

p$ + @) = - (l)u(l))x = Fl, (P 

Equations (A 5 )  can be put into the form 

uj2) + - 1 ( 5 3 2 )  + ~ ( 2 ) ) ~  = PuFi - u ( 1 ) ~ : )  + k Y p ( l ) p p '  p2 1 (A71 
Y Y 

2 (1) (1) - ( y  - 1 )  (1) (1) = F and Ti2 )+(y -  1)ug) = - ( y -  1 )  p U ,  u P x  - 3' 

If the second-order generalized Burgers and Navier-Stokes variables are equa- 
ted, the first of equations (A 6) and (A 7) agree, but the second and third of equa- 
tions (A 6) do not correspond with (A 7). Nevertheless, by eliminating variables, 
we can derive the following equations for u$L and d2): 

(A 8) 

(A 9) 

1 

Y 
@'%!& - u%S',x = fFNSZ)l  - - $- FNS3)x, 

1 

Y 
Since the fist-order solutions are the same, we know that the right sides of 

(A 8) and (A 9) are equal. Because d2) and ug& satisfy identical boundary condi- 
tions and equations, they must be equal. The first of equations (A 6) and (A 7) 
shows that p(l)  corresponds to pgs. By eliminating ugh from the third equation of 
(A 6), we find the equation, 

UF' - uf!  = - - (Pl + PJ2. 

(T$%)t = (Y - ~)P$?,S - (Y - l )%wl + %sS- 

With %S, = F1 and FNS, = F3 + (P- l)y/$;, 

we finally arrive at  the correction formula for T(2): 

(A 10) 
Y 

Pr 
(Tg T(')), = - TCA. S -  

If there is no heat conduction, Pr -+ 03 and T$& + T(2). This last result could 
have been predicted on physical grounds because the viscous term in the Navier- 
Stokes equation does not contribute to entropy transport, only to entropy pro- 
duction. This last effect is third order, and could have no effect on the second- 
order acoustic expansion. 
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